Paleoclimate Simulations

The paleoclimate simulations used here come from the HadCM3 version of the UK Met Office Unified Model General Circulation Model (GCM) and the Community Climate System Model (CCSM) of the National Center for Atmospheric Research (NCAR). These are well-established coupled ocean atmosphere climate model, having contributed to the last three Intergovernmental Panel on Climate Change (IPCC) Assessment Reports  (AR3, AR4 and AR5), and used to simulate climate for nearly 20 years.  The atmospheric component has a time-step of 30 minutes, and is coupled to the ocean every day. Typically, the climatology is output every month, and the mean annual and monthly climate are calculated from these data. As the name GCM suggests, this class of climate model is able to reproduce the major circulations in the both the atmosphere and ocean, as well as major drivers of inter-annual variability. The resolution also allows for synoptic weather patterns to be simulated, along with key climate oscillations, but may not simulate well local extremes or regions with high gradients (e.g. extreme convective events). HadCM3 is in the middle of the range of overall climate sensitivities exhibited by the IPCC-class climate models, whereas CCSM models are in the lower overall range of climate sensitivities.

The paleoclimate simulations are mathematical models of the general circulation of a planetary atmosphere or ocean. They are massively complex simulations of weather on Earth during as the result of global conditions at that time period, including: location and shape of terrestrial landmasses, CO2/N2O/CH4 levels, and orbital parameters

If GCM simulations represent a composite of a continuous period (i.e. the CCSM data from PaleoView), mean/min/max climate values were calculated in 50 year window increments, which were subsequently processed for the whole focal time period (e.g. for the Heinrich Stadial 1, which occurred from 17.0-14.7 ka, all 50 yr composites within this period were averaged).

Details of Paleoclimate Simulations

time period (bp)
Pleistocene: late-Holocene, Meghalayan (4.2-0.3 ka)
CCSM Fordham  et al., 2017
Pleistocene: mid-Holocene, Northgrippian (8.326-4.2 ka)
CCSM Fordham  et al., 2017
Pleistocene: early-Holocene, Greenlandian (11.7-8.326 ka)
CCSM Fordham  et al., 2017
Pleistocene: Younger Dryas Stadial (12.9-11.7 ka)
CCSM Fordham  et al., 2017
Pleistocene: Bølling-Allerød ( 14.7-12.9 ka)
CCSM Fordham  et al., 2017
Pleistocene: Heinrich Stadial 1 (17.0-14.7 ka)
CCSM Fordham  et al., 2017
Pleistocene: Last Interglacial (ca. 130 ka)
CCSM Otto-Bliesner…  2006
Pleistocene: MIS19 (ca. 787 ka)
HadCM3  Brown  et al., 2018
Pliocene: mid-Pliocene warm period (3.205 Ma) HadCM3  Hill 2015
Pliocene: M2 (ca. 3.3 Ma) HadCM3  Dolan et al., 2015

Statistical Downscaling:

We employed the Change-Factor method to downscale the paleoclimatic climatologies.  This approach creates high-resolution layers by quantifying the differences between the paleo and current (control) climatologies for each raw variable, at the native model-specific spatial resolution.  This functions as a calibration step to measure the raw climate anomalies at the coarser spatial scale climate model.  Once this step is completed, the difference layers (commonly called delta layers, change-factor differences, or climate change anomalies) are downscaled to high-resolutions (here 5-20km) and summed to a matching high-resolution current climate variable.  This method is relatively quick, requiring less than a day of computational time per raster layer, and can be efficiently applied to global datasets.  A major benefit of the Change-Factor method relative to other methods of downscaling is its ability to incorporate small-scale topographic nuances in regional climatologies that are often not captured in climate models, but present in the high-resolution current datasets. Examples include climatic differences in mountainous regions such as differences between valleys, mid-elevation ranges, and their peaks.

Here, we created global delta layers by subtracting the raw temperature and precipitation values of each snapshot paleoclimatic simulation from corresponding HadCM3 control simulations that represent the pre-industrial era.  The delta layer represents the pixel-by-pixel changes from pre-industrial conditions, within the constraints of each snapshot climate simulation. The delta layers were downscaled 60 fold from 2.5 arc-degrees to 2.5 arc-minutes (ca. 5km) using a tensioned spline in ArcGIS 10.5 (sampling=12 nearest observations to a focal point, weight of 0.1, ESRI 2018).   A spline is a deterministic interpolation method that ihas been commonly considered as appropriate for interpolation environmental variables.  We used a tensioned spline (instead of a regularized spline) to avoid extraneous inflection points, and more generally to preserve shape properties, such as monotonicity and convexity, of a set of data points – and to do so without sacrificing smoothness . Spline approaches are based on requirement that the interpolation function passes through the data points, but also yield the smoothest transition as possible.

The high-resolution delta layers were then summed to a corresponding current monthly temperature or precipitation climate layers from the Climatologies at High-Resolution for the Earth’s Land Surface Areas (CHELSA) database, at the same resolution (see download links here).  Though rare in our analyses, negative precipitation values were converted to zero. To reduce pixel-depth and file sizes of final products, all monthly temperature raster layers were multiplied by 10 and converted to integers.  Prior to the creation of bioclimate layers, final monthly layers were adjusted to the mean sea-level of paleoclimatic period, based on adjustments to a contemporary bathymetry dataset.

Downscaling creates high resolution datasets useful for biological modeling from the coarse data output from paleoclimatic simulations

Bioclimatic parameters:

From the high-resolution monthly temperature and precipitation values, we calculated a set of derived parameters broadly used in ecological applications. These bioclimatic variables are derived from the monthly mean temperature (or minimum and maximum temperature, depending on their availability) and precipitation values. They are specifically developed for species distribution modelling and related ecological applications .  The procedure for generating bioclimatic variables followed WorldClim and used the ‘biovars’ function of the R package dismo. Output bioclimate layers were saved as individual GeoTiffs (*tif) and projected in the WGS 1984 projection.

Bio_1=Annual Mean Temperature [°C*10]
Bio_2=Mean Diurnal Range [°C]
Bio_3=Isothermality [Bio_2/Bio_7]
Bio_4=Temperature Seasonality [standard deviation*100]
Bio_5=Max Temperature of Warmest Month [°C*10]
Bio_6=Min Temperature of Coldest Month [°C*10]
Bio_7=Temperature Annual Range [°C*10]
Bio_8=Mean Temperature of Wettest Quarter [°C*10]
Bio_9=Mean Temperature of Driest Quarter [°C*10]
Bio_10=Mean Temperature of Warmest Quarter [°C*10]
Bio_11=Mean Temperature of Coldest Quarter [°C*10]
Bio_12=Annual Precipitation [mm/year]
Bio_13=Precipitation of Wettest Month [mm/month]
Bio_14=Precipitation of Driest Month [mm/month]
Bio_15=Precipitation Seasonality [coefficient of variation]
Bio_16=Precipitation of Wettest Quarter [mm/quarter]
Bio_17=Precipitation of Driest Quarter [mm/quarter]
Bio_18=Precipitation of Warmest Quarter [mm/quarter]
Bio_19=Precipitation of Coldest Quarter [mm/quarter]

Bioclimatic variables, or bioclims, are derived from the monthly temperature and rainfall values in order to generate more biologically meaningful variables

Key Citations

Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology 25, 1965-1978 (2005).

Gordon, C. et al. The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments. Climate dynamics 16, 147-168 (2000).

Pope, V., Gallani, M., Rowntree, P. & Stratton, R. The impact of new physical parametrizations in the Hadley Centre climate model: HadAM3. Climate Dynamics 16, 123-146 (2000).

Randall, D. A. et al. Climate Models and Their Evaluation.  (2007).

Kendon, E. J. et al. Do convection-permitting regional climate models improve projections of future precipitation change? Bulletin of the American Meteorological Society 98, 79-93 (2017).

Lüthi, D. et al. High-resolution carbon dioxide concentration record 650,000–800,000 years before present. Nature 453, 379 (2008).

Loulergue, L. et al. Orbital and millennial-scale features of atmospheric CH 4 over the past 800,000 years. Nature 453, 383 (2008).

Spahni, R. et al. Atmospheric methane and nitrous oxide of the late Pleistocene from Antarctic ice cores. Science 310, 1317-1321 (2005).

Laskar, J. et al. A long-term numerical solution for the insolation quantities of the Earth. Astronomy & Astrophysics 428, 261-285 (2004).

Bragg, F., Lunt, D. & Haywood, A. Mid-Pliocene climate modelled using the UK hadley centre model: PlioMIP experiments 1 and 2. Geoscientific Model Development 5, 1109 (2012).

Hill, D. J. The non-analogue nature of Pliocene temperature gradients. Earth and Planetary Science Letters 425, 232-241 (2015).

Dowsett, H. et al. The PRISM3D paleoenvironmental reconstruction. Stratigraphy 7, 123-139 (2010).

Salzmann, U., Haywood, A., Lunt, D., Valdes, P. & Hill, D. A new global biome reconstruction and data‐model comparison for the middle Pliocene. Global Ecology and Biogeography 17, 432-447 (2008).

Sohl, L. et al. PRISM3/GISS topographic reconstruction: US Geological Survey Data Series 419. US Geological Survey, Reston VA (2009).

Haywood, A. M. et al. On the identification of a Pliocene time slice for data–model comparison. Phil. Trans. R. Soc. A 371, 20120515 (2013).

Lisiecki, L. E. & Raymo, M. E. A Pliocene‐Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography 20 (2005).

Dolan, A. M. et al. Modelling the enigmatic Late Pliocene Glacial Event—Marine Isotope Stage M2. Global and Planetary Change 128, 47-60 (2015).

Tan, N. et al. Exploring the MIS M2 glaciation occurring during a warm and high atmospheric CO2 Pliocene background climate. Earth and Planetary Science Letters 472, 266-276 (2017).

Bartoli, G., Hönisch, B. & Zeebe, R. E. Atmospheric CO2 decline during the Pliocene intensification of Northern Hemisphere glaciations. Paleoceanography 26 (2011).

Haywood, A. M. et al. Large-scale features of Pliocene climate: results from the Pliocene Model Intercomparison Project. Clim. Past 9, 191-209, doi:10.5194/cp-9-191-2013 (2013).

Wilby, R. et al. Guidelines For Use of Climate Scenarios Developed From Statistical Downscaling Methods.  (2004).

Lima-Ribeiro, M. et al. EcoClimate: a database of climate data from multiple models for past, present, and future for macroecologists and biogeographers. Vol. 10 (2015).

Laslett, G. M. Kriging and Splines: An Empirical Comparison of Their Predictive Performance in Some Applications. Journal of the American Statistical Association 89, 391-400, doi:10.2307/2290837 (1994).

Dubrule, O. Comparing splines and kriging. Computers & Geosciences 10, 327-338, doi: (1984).

Hutchinson, M. F. Interpolating mean rainfall using thin plate smoothing splines. International Journal of Geographical Information Systems 9, 385-403, doi:10.1080/02693799508902045 (1995).

Laslett, G. M., McBratney, A. B., Pahl, P. J. & Hutchinson, M. F. Comparison of several spatial prediction methods for soil pH. Journal of Soil Science 38, 325-341, doi:10.1111/j.1365-2389.1987.tb02148.x (1987).

Karger, D. N. et al. Climatologies at high resolution for the earth’s land surface areas. Scientific Data 4, 170122, doi:10.1038/sdata.2017.122 (2017).

Weatherall, P. et al. A new digital bathymetric model of the world’s oceans. Earth and Space Science 2, 331-345, doi:10.1002/2015EA000107 (2015).

Thompson, R. S. & Fleming, R. F. Middle Pliocene vegetation: reconstructions, paleoclimatic inferences, and boundary conditions for climate modeling. Marine Micropaleontology 27, 27-49, doi: (1996).

Markwick, P. J. The palaeogeographic and palaeoclimatic significance of climate proxies for data-model comparisons.  (2007).

De Boer, B., Van de Wal, R., Bintanja, R., Lourens, L. & Tuenter, E. Cenozoic global ice-volume and temperature simulations with 1-D ice-sheet models forced by benthic δ 18 O records. Annals of Glaciology 51, 23-33 (2010).

Fordham, D. A., Saltré, F. , Haythorne, S. , Wigley, T. M., Otto‐Bliesner, B. L., Chan, K. C. and Brook, B. W. (2017), PaleoView: a tool for generating continuous climate projections spanning the last 21 000 years at regional and global scales. Ecography, 40: 1348-1358. doi:10.1111/ecog.03031

926 thoughts on “Methods”

  1. Pingback: viagra price
  2. Pingback: viagra pills
  3. Pingback: cialis daily
  4. Pingback: cialis 10 mg
  5. Pingback: cialis best price
  6. Pingback: cialis 10 mg
  7. Pingback: levitra online buy
  8. Pingback: sildenafil 20 mg
  9. Pingback: viagra coupon
  10. Pingback: cialis canada buy
  11. Pingback: amoxil for uti
  12. Pingback: teva tadalafil
  13. Pingback: sildenafil citrate
  14. Pingback: cost of viagra
  15. Pingback: cialis online
  16. Pingback: viagra pill
  17. Pingback: praziquantel otc
  18. Pingback: cost daily cialis
  19. Pingback: ed viagra
  20. Pingback: zpack 500mg
  21. Pingback: buy indian viagra
  22. Pingback: tadalafil mexico
  23. Pingback: sildenafil 3000mg
  24. Pingback: cialis precio
  25. Pingback: viagra online
  26. Pingback: sildenafil 20mg
  27. Pingback: cash advance store
  28. Pingback: play pokies game
  29. Pingback: cheap viagra safe
  30. Pingback: viagra walmart
  31. Pingback: generic viagra
  32. Pingback: viagra users group
  33. Pingback: viagra cost
  34. Pingback: cost for viagra
  35. Pingback: neurontin tablets
  36. Pingback: plaquenil 150 mg
  37. Pingback: priligy
  38. Pingback: modafinil amazon
  39. Pingback: ivermectin pills
  40. Pingback: ventolin 100
  41. Pingback: zithromax 1000mg
  42. Pingback: herb viagra
  43. Pingback: 50 mg gabapentin
  44. Pingback: viagra wirkung
  45. Pingback: prednisone buying
  46. Pingback: cialis wikipedia
  47. Pingback: modafinil sale
  48. Pingback: ventolin buy
  49. Pingback: cialis price usa
  50. Pingback: viagra pfizer
  51. Pingback: viagra vs cialis
  52. Pingback: viagra cialis
  53. Pingback: viagra amazon
  54. Pingback: 100mg viagra pill
  55. Pingback: low price viagra
  56. Pingback: roman viagra
  57. Pingback: meritking
  58. Pingback: elexusbet
  59. Pingback: Eurocasino
  60. Pingback: madridbet
  61. Pingback: meritroyalbet
  62. Pingback: eurocasino
  63. Pingback: eurocasino
  64. Pingback: meritking
  65. Pingback: meritroyalbet
  66. Pingback: price of tadalafil
  67. Pingback: meritroyalbet
  68. Pingback: viagra at walmart
  69. Pingback: sildenafil goodrx
  70. Pingback: cialis goodrx
  71. Pingback: mom son viagra
  72. Pingback: save on pharmacy
  73. Pingback: perabet
  74. Pingback: madridbet
  75. Pingback: generic stromectol
  76. Pingback: trcasino
  77. Pingback: elexusbet
  78. Pingback: combivent order
  79. Pingback: india ivermectin
  80. Pingback: cialis generic
  81. Pingback: cheap stromectol
  82. Pingback: ivermectin uk buy
  83. Pingback: trcasino
  84. Pingback: matrifen patches
  85. Pingback: tombala siteleri
  86. Pingback: tombala siteleri
  87. Pingback: tombala siteleri
  88. Pingback: dr syed haider
  89. Pingback: buy aralen 200mg
  90. Pingback: olumiant 4 mg
  91. Pingback: merck molnupiravir
  92. Pingback: buy aralen cheap
  93. Pingback: lumigan 01
  94. Pingback: meritroyalbet
  95. Pingback: Anonymous
  96. Pingback: stromectol at
  97. Pingback: stromectol 0.1
  98. Pingback: Anonymous
  99. Pingback: cost of ivermectin
  100. Pingback: ivermectin 3mg tab
  101. Pingback: Anonymous
  102. Pingback: Anonymous
  103. Pingback: ivermectin kaufen
  104. Pingback: order ivermectin
  105. Pingback: buy viagra online
  106. Pingback: stromectol otc
  107. Pingback: cialis dapoxetine
  108. Pingback: cialis dose
  109. Pingback: cialis mastercard
  110. Pingback: stromectol pill
  111. Pingback: cialis in canada
  112. Pingback: cialis 5
  113. Pingback: canadian drug
  114. Pingback: ivermectin brand
  115. Pingback: cialis price
  116. Pingback: peptides tadalafil
  117. Pingback: 1squatter
  118. Pingback: molnupiravir
  119. Pingback: tadalafil lilly
  120. Pingback: tadalafil dosages
  121. Pingback: cialis medication
  122. Pingback: cialis oder viagra
  123. Pingback: child porn
  124. Pingback: Google
  125. Pingback: cheap cialis india
  126. Pingback: tadalafil liquid
  127. Pingback: stromectol kaufen
  128. Pingback: best casino online
  129. Pingback: flagyl ivpb
  130. Pingback: cialis 20mg online
  131. Pingback: bactrim
  132. Pingback: omnicef fda
  133. Pingback: azithromycin msds
  134. Pingback: ivermectin bnf
  135. Pingback: clomid pills
  136. Pingback: ivermectin 6 mg
  137. Pingback: krt carts fake
  138. Pingback: ivermectin dosage
  139. Pingback: zithromax generic
  140. Pingback: crocoite crystal
  141. Pingback: keltec cp 33
  142. Pingback: Glock 23
  143. Pingback: flccc ivermectin
  144. Pingback: meritroyalbet
  145. Pingback: meritking
  146. Pingback: meritking
  147. Pingback: drug furosemide
  148. Pingback: lasix drug price
  149. Pingback: stromectol tablete
  150. Pingback: merter escort
  151. Pingback: ivermectin 12
  152. Pingback: eurocasino
  153. Pingback: eurocasino
  154. Pingback: butt plug
  155. Pingback: Glo cart
  156. Pingback: solana
  157. Pingback: MFT
  158. Pingback: popples
  159. Pingback: Herbal Incense
  160. Pingback: Herbal Incense
  161. Pingback: stromectol cream
  162. Pingback: madridbet
  163. Pingback: lucky land casino
  164. Pingback: liquid tadalafil
  165. Pingback: 5.56 green tips
  166. Pingback: buy cialis pro
  167. Pingback: Uganda tours
  168. Pingback:
  169. Pingback: canadian viagra
  170. Pingback: visit website
  171. Pingback: Krt vape
  172. Pingback: cialis not working
  173. Pingback: junk car towing
  174. Pingback: canada medication
  175. Pingback: FLINTLOCK PISTOL
  176. Pingback: cock extension
  177. Pingback: Restaurant
  178. Pingback: ivermectin tablets
  179. Pingback: stock market 101
  180. Pingback: canadian pharmacy
  181. Pingback: zwitsal
  182. Pingback: mushrooms for sale
  183. Pingback: junk car removal
  184. Pingback: thrusting massager
  185. Pingback: listen here
  186. Pingback: liquid ivermectin
  187. Pingback: imverctin
  188. Pingback:
  189. Pingback: child porn
  190. Pingback: World News Today
  191. Pingback: mazhor4sezon
  192. Pingback: ivermectin 3 mg
  193. Pingback: Haupia strain
  194. Pingback: filmfilmfilmes
  195. Pingback: canada pharmacies
  196. Pingback: gRh9UPV
  197. Pingback: Haupia strain
  198. Pingback: Platinum haupia
  199. Pingback: Bubble hash
  200. Pingback: Moroccan hash
  201. Pingback: Litto disposable
  202. Pingback: online pharmacies
  203. Pingback: Bubble hash
  204. Pingback: nih ivermectin
  205. Pingback: reasons for ed
  206. Pingback: generic ed pills
  207. Pingback:
  208. Pingback: 9-05-2022
  209. Pingback:
  210. Pingback: pharmacy canada
  211. Pingback: Xvideos
  212. Pingback: XVIDEOSCOM Videos
  213. Pingback:
  214. Pingback: ivanesva
  215. Pingback: canadadrugs
  216. Pingback: buy viagra 25mg
  217. Pingback:
  218. Pingback: cialis pharmacy
  219. Pingback: 100mg viagra
  220. Pingback: buy cialis on line
  221. Pingback: Netflix
  222. Pingback: stromectol buy uk
  223. Pingback: psy-
  224. Pingback: ivermectin amazon
  225. Pingback: psy online
  226. Pingback: pharmacy canada
  227. Pingback: bahis siteleri
  228. Pingback: DPTPtNqS
  229. Pingback: qQ8KZZE6
  230. Pingback: D6tuzANh
  231. Pingback: SHKALA TONOV
  232. Pingback: canadian viagra
  233. Pingback: 3NOZC44
  234. Pingback:
  235. Pingback: buy viagra usa
  236. Pingback: Psikholog
  237. Pingback: canadian drug
  238. Pingback: ivermectine kopen
  239. Pingback:
  240. Pingback: site
  241. Pingback: viagra
  242. Pingback: buy cialis online
  243. Pingback: stats
  244. Pingback: UKRAINE
  245. Pingback: revatio
  246. Pingback: Ukraine-war
  247. Pingback: video
  248. Pingback:
  249. Pingback:
  250. Pingback: film
  251. Pingback: buy viagra usa
  252. Pingback:
  253. Pingback:
  254. Pingback: Anonymous
  255. Pingback: pharmacy walmart
  256. Pingback:
  257. Pingback:
  258. Pingback: rodnoe-kino-ru
  259. Pingback: buy cialis no rx
  260. Pingback: confeitofilm
  261. Pingback:
  262. Pingback: buy cialis
  263. Pingback:
  264. Pingback: buy generic cialis
  265. Pingback: sY5am
  266. Pingback: canadian rx
  267. Pingback: Dom drakona
  268. Pingback: JGXldbkj
  269. Pingback: aOuSjapt
  270. Pingback: ìûøëåíèå
  271. Pingback: psikholog moskva
  272. Pingback: A片
  273. Pingback: Dim Drakona 2022
  274. Pingback: buy viagra germany
  275. Pingback: buy viagra uk
  276. Pingback: TwnE4zl6
  277. Pingback: canada rx
  278. Pingback: drugstore online
  279. Pingback: stromectol france
  280. Pingback: canada pharmacy
  281. Pingback: buy stromectol uk
  282. Pingback: stromectol lice
  283. Pingback: link
  284. Pingback: video-2
  285. Pingback:
  286. Pingback: buy ivermectin
  287. Pingback:
  288. Pingback: 000-1
  289. Pingback: 3SoTS32
  290. Pingback: 3DGofO7
  291. Pingback: stromectol cvs
  292. Pingback: stromectol reviews
  293. Pingback: cialis from canada
  294. Pingback: canada drug
  295. Pingback:
  296. Pingback: ivermectina
  297. Pingback: canada drug
  298. Pingback:
  299. Pingback: logarkomx
  300. Pingback:
  301. Pingback: stromectol biam
  302. Pingback:
  303. Pingback: Bahiscom
  304. Pingback: Betmatik
  305. Pingback: Betist
  306. Pingback: Cratosslot.
  307. Pingback: Betlike
  308. Pingback: Betebet
  309. Pingback: Mariobet
  310. Pingback: Tempobet
  311. Pingback: Tipobet
  312. Pingback: Klasbahis
  313. Pingback: Vdcasino
  314. Pingback: Casinoeuro
  315. Pingback: imajbet
  316. Pingback: imajbet giris
  317. Pingback: Sahabet
  318. Pingback: ivermectine
  319. Pingback:
  320. Pingback: 1xbet
  321. Pingback: Bahigo
  322. Pingback: Bahis siteleri
  323. Pingback: Onwin
  324. Pingback: Kralbet
  325. Pingback: Tipobet Giriş
  326. Pingback: Betkolik
  327. Pingback: Casino Siteleri
  328. Pingback: Bettilt
  329. Pingback: Betasus
  330. Pingback: Dinamobet
  331. Pingback: Jojobet
  332. Pingback: Jojobet giriş
  333. Pingback:
  334. Pingback: Hepsibahis
  335. Pingback: Marsbahis
  336. Pingback:
  337. Pingback:
  338. Pingback: facts stromectol
  339. Pingback: brutv
  340. Pingback: site 2023
  341. Pingback: canada drug
  342. Pingback: buy propecia ebay
  343. Pingback: online pharmacy
  344. Pingback: canadian rx
  345. Pingback: canada pharmacy
  346. Pingback: canadian cialis
  347. Pingback: sitestats01
  348. Pingback:
  349. Pingback:
  350. Pingback: canada pharmacy
  351. Pingback: pharmacy canada
  352. Pingback:

Comments are closed.